Implementing a Construction Strategy – Playbook Review Part 7

In part six, we discussed the various elements of an effective communication strategy when implementing a resilience program. Now, we will explore how to implement a construction strategy. This step is discussed in chapter five of PDi2’s Utility Infrastructure Resiliency Playbook.

Ideally, defining program scope, assessing resourcing implications, and contracting strategy should be discussed in the planning phases. Internal or contractor scope of work would normally be defined when the program or project concept is defined. The project concept then becomes the lens through which the resourcing strategy, contracting strategy, sourcing strategy, and project delivery tactics are selected.

Resourcing Strategy

Once the resiliency program is defined and the phasing pace identified, an assessment of needed resources can take place. Key among these resources are construction labor and supervision. Many electric utilities maintain significant internal construction and crew resources and utilize contractors when peak capacity warrants. As the resource needs are defined, a later decision on the use and application of internal crews versus contractor crews is required. 

Contracting Strategy 

The first steps of a contracting strategy should be setting a sourcing strategy for the design, right of way acquisition, and construction services associated with the resiliency program. Next comes the selection of project delivery tactics, followed by making an insourcing versus outsourcing decision (discussed more fully in the next post). One of the drivers of the insourcing versus outsourcing decision is an estimate of resources needed and the implications of the utility to building or hiring this workforce.

Sourcing Strategy 

A sourcing strategy involves first deciding whether the owner prefers a more arms-length or collaborative/integrated relationship with service providers to execute the resiliency program. A more arms-length approach or traditional approach is easier to implement and understand. A collaborative or integrated sourcing strategy offers the potential for lower long-term cost, risk reduction, and process improvement. Given the visibility of these types of programs, the long-term nature of them, the opportunity for process refinement or improvement, and the regulatory oversight, a sourcing strategy offering risk reduction may prove beneficial.

Project Delivery Tactics 

Once a decision is made on a sourcing strategy, the next major decision is to select a project delivery system for the resiliency program. The project delivery system defines how individual projects or bundles of work will be undertaken. There are three tactical decisions to answer and the combination of all three of these decisions equals a project delivery system.

  1. What contract vehicle or method will you use to select a price?
  2. How will you manage the design/construction process?
  3. How will you build the job?

Download the Playbook

Once the various strategies are in place, the next part of resiliency program implementation involves insourcing vs outsourcing tactics, field productivity reporting, and implementing program KPIs. For a deeper look at the nuances of developing a resiliency program and relevant case studies, download a free copy of PDi2’s Utility Infrastructure Resiliency Playbook.

October 2019

Utility Resiliency Playbook

Developed by PDi2

Mike Beehler

National Spokesperson/PDI2

Mike Beehler has 40 years of electric T&D experience at Tucson Electric Power, Hawaiian Electric Company and Burns & McDonnell.  He is educated as a civil/structural engineer and is a registered professional engineer in eight states.  He currently is the founding member and Chief Opportunity Officer of Mike Beehler & Associates, LLC and serves as the National Spokesperson for the Power Delivery Intelligence Initiative. 

Mike is a Fellow in ASCE and a Member of IEEE and CIGRE.  He has been married for 40 years and has four adult children and some delightful grandchildren.  He lives on Singer Island, FL.

Tony Hemling

Earthgrid
Voting Member PDi2

Troy Helming is a modern-day industrialist and Unicorn founder. He’s an innovator, inventor, author, an elite athlete (invited 4x to compete on American Ninja Warrior), and a clean energy executive. As a creator, he’s founded clean energy & climate-tech companies that have generated more than $30 Billion of economic impact to date and invented 2 technologies that have led to over 60 clean energy patent claims.

LinkedIn

Tim Wagner, Executive Director

Tim Wagner has nearly thirty years of association management experience, including positions as President & CEO, Executive Vice President, Chief Financial Officer, Chief Operating Officer, and Director of Finance. He has been instrumental in the financial and program success of several associations in the power, energy, and broadband industries. He has vast experience at national trade associations, including association governance, grant management, workforce development, planned giving, meeting planning, accounting, investment management, employee benefits, building operations, and information systems. Tim is a graduate (summa cum laude) of the University of Virginia, where he presented his thesis on the Economic Impact of the Rural Electrification Administration.

Landry Molimbi

Head of Asset Management and Prysmian Electronics
Prysmian Group North America
Voting Member PDi2

Landry Molimbi is responsible for leading all Asset Management and Product Development activities for High Voltage & Medium Voltage Partial Discharge testing/monitoring services, optical sensing products (DAS, DTS) and innovative solutions for the North America Business Units (High Voltage, Power Distribution, Industrial, Telecom).

In this role, Landry is focused on business development, project management, technical sales support, and Partial Discharge measurement services for the Prysmian Group proprietary and revolutionary PRY-CAM technologies for the asset management of electrical systems, helping utilities increase uptime, asset longevity and safety while reducing maintenance costs & risks.

Landry started his career with General Cable (Silec) in 2007 and joined NKT Photonics in 2011. He moved to the Prysmian Group as Vice President for the Prysmian Electronics BU in 2018.

Born in Paris, France, Landry holds a master’s degree in Engineering from the ENSEM, a school of the National Polytechnic Institute of Lorraine in Nancy. Landry is also a member of various industry committees and an active member of CIGRE.

John W. Fluharty, II

Quanta Services Inc.
Voting Member PDi2

John W Fluharty, II is currently working as part of Quanta Services, Inc.’s (Quanta) underground cable group that performs large underground electrical projects.

Previously Mr. Fluharty was Vice President of Mears Group, Inc. (Mears) a subsidiary of Quanta Services, Inc. He was an owner of Mears until its sale to Quanta in 2000. He managed every division in the company and at the end of his tenure with Mears he focused on business development, asset management, safety and operations for large projects.

Mr. Fluharty is a board member of the Power and Communications Contractor Association (PCCA), and the American Pipeline Contractors Association (APCA).

LinkedIn

David Lindsay

Marketing Manager – Energy Borealis Compounds, Inc.
Immediate-past Chairman/Voting Member PDi2

David Lindsay is currently Marketing Manager for the Energy business of Borealis Compounds, Inc. in North America. He has over 20 years in the US wire and cable business, working at manufacturers, non-profit organizations and electrical contractors. His experiences range from research and product development, to manufacturing, construction and installation of EHV cable systems. At Borealis he is responsible for customer and end-use marketing, and strategic planning of all wire and cable related product lines.

David serves on the NEETRAC Advisory Board, is actively involved in IEEE Insulated Conductor Committee and is past US representative to Cigré SC B1. He holds a Bachelors of Materials Engineering from the Georgia Institute of Technology and Masters of Business Administration from the University of West Georgia.

LinkedIn

Paul Caronia

Application Technology Leader, Power Cables - DOW
Executive Board/Voting Member PDi2

Paul Caronia, is the global power cable materials application technology leader in the Wire and Cable materials group of The Dow Chemical Company. He is responsible for leading the development and commercialization of new product technology for power cable applications. He has been involved in the development and commercial usage of today’s tree-retardant crosslinked polyethylene used in medium voltage cables, crosslinked polyethylene insulation used in high voltage cables as well as semiconductive compounds and flame retardant compounds. He is a senior member of The Institute of Electrical and Electronics Engineers (IEEE) Power Engineering Society and the IEEE’s Insulated Conductors Committee (ICC) as well as a voting member of the IEEE standard association. As a member of the IEEE ICC, he chairs ICC A7 on power cable jackets which just recently completed revising IEEE Guide P532for Selecting and Testing Jackets for Power, Instrumentation and Control Cables as well as the chair of ICC A6 on accelerated aging of materials used in cable applications. Paul is also a member of CIGRE (International Council on Large Electric Systems) and was a member of working group B1.55 that developed recommendations for submarine cables to 60 kV and is currently a member of working group B2.75 developing an application guide for insulated and un-insulated conductors used on medium and low voltage overhead lines. Is the author of over 40 publications/presentations, has over 12 granted patents and is a recipient of the R&D100 award. He is a graduate of Rutgers University, holding Degrees in Engineering as well as a licensed professional engineer.

LinkedIn

Ben Lanz

Director of Applications Engineering, IMCORP
Chair/Voting Member PDi2

After 20 years in the power cable industry, Mr. Lanz currently holds the position of Director of Applications Engineering at IMCORP and has technical oversight of power cable life cycle consulting. He is a Senior Member of the IEEE Power & Energy Society, a voting member of the IEEE Standards Society, and a member of the IEEE Dielectrics and Industrial Applications Societies. He has served as Chairman of the Insulated Conductors Committee (ICC) technical committees responsible for cable testing, cable reliability and surge arresters, Chairman of the American Wind Energy Association (AWEA) O&M Balance of Plant technical subcommittee, a UL technical study committee member for MV and HV DC cables and is a reviewer and voting pool member for InterNational Electrical Testing Association (NETA) standards. Mr. Lanz received his electrical engineering degree from the University of Connecticut (UCONN) under mentorship of Director of the Institute of Material Science Electrical Insulation Research Center (EIRC), Dr. Matthew Mashikian. He has published over a dozen papers on power system reliability, asset management, and diagnostics and regularly presents on the topics.